1. Find the set of values of x for which $\frac{x^{2}}{x-2}>2 x$.
(Total 6 marks)
2. (a) Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+2 \frac{\mathrm{~d} x}{\mathrm{~d} t}+5 x=0 \tag{4}
\end{equation*}
$$

(b) Given that $x=1$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=1$ at $t=0$, find the particular solution of the differential equation, giving your answer in the form $x=\mathrm{f}(t)$.
(c) Sketch the curve with equation $x=\mathrm{f}(t), 0 \leq t \leq \pi$, showing the coordinates, as multiples of π, of the points where the curve cuts the x-axis.
(4)(Total 13 marks)
3. (a) Show that the substitution $y=v x$ transforms the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x-4 y}{4 x+3 y} \tag{I}
\end{equation*}
$$

into the differential equation

$$
\begin{equation*}
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{3 v^{2}+8 v-3}{3 v+4} \tag{4}
\end{equation*}
$$

(b) By solving differential equation (II), find a general solution of differential equation (I). (5)
(c) Given that $y=7$ at $x=1$, show that the particular solution of differential equation (I) can be written as

$$
(3 y-x)(y+3 x)=200
$$

(5)(Total 14 marks)
4. A curve C has polar equation $r^{2}=a^{2} \cos 2 \theta, 0 \leq \theta \leq \frac{\pi}{4}$.

The line l is parallel to the initial line, and l is the tangent to C at $\quad \theta=\frac{\pi}{2} \uparrow$ the point P, as shown in the figure above.
(a) (i) Show that, for any point on $C, r^{2} \sin ^{2} \theta$ can be expressed in terms of $\sin \theta$ and a only. (1)
(ii) Hence, using differentiation, show that the polar coordinates of P are $\left(\frac{a}{\sqrt{2}}, \frac{\pi}{6}\right)$.(6)

The shaded region R, shown in the figure above, is bounded by C, the line l and the half-line with equation
$\theta=\frac{\pi}{2} . \quad$ (b) Show that the area of R is $\frac{a^{2}}{16}(3 \sqrt{3}-4)$.
5. Solve the equation

$$
z^{5}=\mathrm{i}
$$

giving your answers in the form $\cos \theta+\mathrm{i} \sin \theta$.
(Total 5 marks)
7.

$$
(1+2 x) \frac{\mathrm{d} y}{\mathrm{~d} x}=x+4 y^{2} .
$$

(a) Show that

$$
(1+2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=1+2(4 y-1) \frac{\mathrm{d} y}{\mathrm{~d} x}
$$

(b) Differentiate equation 1 with respect to x to obtain an equation involving

$$
\frac{\mathrm{d}^{3}}{\mathrm{~d} x^{3}}, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}, \frac{\mathrm{~d} y}{\mathrm{~d} x}, x \text { and } y .
$$

Given that $y=\frac{1}{2}$ at $x=0$,
(c) find a series solution for y, in ascending powers of x, up to and including the term in x^{3}.
8. In the Argand diagram the point P represents the complex number z.

Given that $\arg \left(\frac{z-2 \mathrm{i}}{z+2}\right)=\frac{\pi}{2}$,
(a) sketch the locus of P,
(b) deduce the value of $|\mathrm{z}+1-\mathrm{i}|$.

The transformation T from the z-plane to the w-plane is defined by

$$
w=\frac{2(1+\mathrm{i})}{z+2}, \quad z \neq-2
$$

(c) Show that the locus of P in the z-plane is mapped to part of a straight line in the w-plane, and show this in an Argand diagram.

